
1

SCC.439 Network and Systems Security

A Secure Messaging Protocol Proposal
Ben Goldsworthy, 32098584

b.goldsworthy@lancaster.ac.uk

I. INTRODUCTION

Communication protocols serve to enable the interactions between devices that form the very basis of the
Internet. Over time, the desires for properties such as authenticiation, integrity and confidentiality, amongst
others, has led to the development of new, more secure protocols. This paper details one such protocol.

The key words ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD
NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described in
RFC 2119 <https://tools.ietf.org/html/rfc2119>

II. SPECIFICATION

The specification explicitly states that this protocol:
• should allow for mutual authentication between client and server;
• should ensure the protection of message integrity and authenticity via a message authentication code (MAC);
• should ensure confidentiality of transmitted data via encryption; and
• should utilise individual session keys; and
• should refresh the session keys after the sending and receipt of 10 data responses from the server.

No mention is made of any performance requirements, or of the need for non-repudiation, so these are assumed
to be outside of scope, as is any mechanism for the downgrading of cryptographic algorithms in order to enable
wider support for the protocol. No explicit mention is made of the need for perfect forward secrecy, but this
has been inferred as a requirement.
The specification also makes the assumption that both the server and the client have an existing shared secret,
hereafter referred to as s0.
The speciftication states that only ‘all data in DATA RESPONSE messages must be [encrypted]’, but does
not preclude further encryption.
No mention is made of resumable or continuable sessions, so session identifiers are considered out-of-scope.
Crucially, as no description is given as to the nature of the data being exchanged, this has been inferred from
the rest of the specification. As no mention is made of the client needing to specify the data they are requesting,
it has been assumed that server returns n bytes of some data d to each and every data request, and that the
protocol specifcation does not intend to handle situations in which the client requires specific data from the
server, only immediate data. An example situation in which this might be the case include that of a sensor that
returns the last m recordings when prompted. The impact of this assumption is highlighted in part IV(A).
Finally, no mention is made of the need for user to be able to choose specific values, such as the number of
messages that can be sent before a key re-negotiation is triggered.

III. THE PROTOCOL

A. Protocol Requirements

The proposed protocol consists of 10 message types: HELLO; HELLO ACK; ACK; DATA REQUEST ;
DATA RESPONSE; DATA ACK; RESEND LAST ; CLOSE; CLOSE ACK; and
CLOSED WITHOUT ACK.



2

The initial HELLO and HELLO ACK messages MUST be signed using personal RSA public keys,
which MUST be authenticated with a CA certificate, via Public Key Infrastructure (PKI). X.509 certificates
MUST NOT be used, as these can be forged.

Once mutual authentication is achieved, Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) SHALL be
used by each party to determine a shared session key, which MUST then be used to encrypt further messages
via AES-GCM. This key generation SHOULD use the Curve25519 elliptic curve, as evidence exists that many
other commonly-used curves may have been intentionally weakened by US intelligence agencies.

New keys MUST be re-negotiated after every 10 DATA RESPONSE messages have been sent, and
their receipt has been confirmed by matched DATA ACK messages. This key re-negotation SHALL be
initiated by the Server.

Message sequence numbers MUST be randomly generated for the initial HELLO message, and thereafter
incremented by nonces sent in preceding messages.

MACs MUST be generated for every message. This process SHOULD use HMAC-SHA512, MUST be
encrypt-then-MAC and SHALL send the MAC along with the message. The hashed initial shared secret
SHA-512(s0) SHOULD be used as the key for the initial HELLO and HELLO ACK messages, and the
subsequent shared secrets s1 . . . sn (also hashed) after each session key re-negotiation.

Messages received more than 25 seconds after their send time MUST be discarded, and the connection
SHOULD be closed. Alternatively, in the interests of usability (albeit at the expense of security), the receiver
MAY choose to send a RESEND LAST in order to prompt the retransmission of the offending message. If
three RESEND LAST s have not produced a timely enough response, the connection MUST be closed.

Either party SHOULD close the connection upon receiving any messages that are corrupted (e.g. wrong
msg-type for the packet structure, incorrect sequence-number, etc.). Alternatively, the receiver MAY
choose to send a RESEND LAST in order to prompt the retransmission of the offending message. If three
RESEND LAST s have not produced a valid message, the connection MUST be closed.

If no expected message has been received after 45 seconds from the previous message send, the connection
SHOULD be closed. Alternatively, the receiver MAY choose to send a RESEND LAST in order to prompt
the retransmission of any lost message. If three RESEND LAST s have not produced a message, the
connection MUST be closed.

If no CLOSE ACK has followed a CLOSE message after 45 seconds, a CLOSED WITHOUT ACK
message MAY be sent and the connection closed on the sender’s end. Alternatively, another CLOSE may
be sent. If three CLOSEs have not produced a CLOSE ACK message, a CLOSED WITHOUT ACK
message MUST be sent and the connection closed on the sender’s end.

B. Message Formats

All messages are identified by the value in their msg-type field (e.g. "hello" for a HELLO message).
This means that, if messages were padded to the produce equal-length packets, it should be impossible for
an eavesdropper to identify what message each packet contains (short of traffic and timing analysis)—this is
considered to be out of scope for the current protocol, however.

1) HELLO, HELLO ACK & DATA RESPONSE: For the initial HELLO message, C includes a
random integer n in the sequence-number field. S includes this in their HELLO ACK in order to pair the
messages together. For the following key-renegotation HELLOs, the sequence number field simply contains



3

the applicable sequence number.
The ttl field contains the Unix time value for the time the message was sent, plus 25 seconds. If the recipient
finds ttl to be higher than the current system time, the connection will be closed.
In HELLO and HELLO ACK messages, the data field contains the sender’s Curve25519 public key. In a
DATA RESPONSE message, it contains the data requested by C in their preceding DATA REQUEST
message.

{ "mac",
"payload" {

"msg-type",
"data",
"sequence-number"
"ttl",

}
}

2) ACK and DATA ACK: The nonce field contains an randomly-generated integer, which both C and
S add to the current sequence_number value to produce the next sequence number.

{ "mac",
"payload" {

"msg-type",
"sequence-number",
"ttl",
"nonce"

}
}

3) DATA REQUEST , RESEND LAST , CLOSE & CLOSE ACK: As other messages. There is
no need for a nonce field in a CLOSE ACK message, as in other *ACKs, as there should be no future
sequence numbers for this connection.

{ "mac",
"payload" {

"msg-type",
"sequence-number"
"ttl",

}
}

4) CLOSED WITHOUT ACK: As other messages, except ttl is ignored as the message being sent
implies delays on the transmission medium, and that the sender has already closed the connection on their end.

{ "mac",
"payload" {

"msg-type",
"sequence-number"

}
}

C. Protocol Description

The protocol is used as follows, for communication between the Client C and the Server S. First, C and S
both generate 32-bit Curve25519 private and public keys. Then, they share these public keys in HELLO and
HELLO ACK messages, each signed using their personal RSA (not Curve25519) public keys.

C → S : {HELLO}



4

S → C : {HELLO ACK}

At this point, S and C can each use the curve25519() function with their own Curve25519 private key and
their partner’s Curve25519 public key, producing another shared secret s1. Each performs SHA-512 (s1) to
produces a shared symmetric key KC,S0

, which is used for the initial temporary session key.

C → S : {ACK}KC,S0

C → S : {DATA REQUEST}KC,S0

S → C : {DATA RESPONSE}KC,S0

C → S : {DATA ACK}KC,S0

...

C → S : {DATA ACK}KC,S0

After 10 DATA RESPONSE messages have been sent (and receipt has be verified by the return of a
DATA ACK message), S generates a new Curve25519 public-private keypair and the three-way handshake
is repeated, this time instigated by S. After C has generated their own Curve25519 public-private keypair, both
can generates a new shared symmetric key KC,S1

(and so on).

S → C : {HELLO}KC,S0

C → S : {HELLO ACK}KC,S0

S → C : {ACK}KC,S1

C → S : {DATA REQUEST}KC,S1

...

At a certain point, C or S (here S) attempts to close the connection mutually.

S → C : {CLOSE}KC,Sn

C → S : {CLOSE ACK}KC,Sn

However, if no CLOSE ACK is forthcoming (say S has frozen temporarily), the sender of CLOSE can send
a CLOSED WITHOUT ACK message to close without waiting for confirmation. This can be riskier, for
example leaving C’s connection open on S.

C → S : {CLOSED WITHOUT ACK}KC,Sn

D. State Machines

These state machines represent the ideal operation of the protocol. Requirements previously stated as
‘SHOULD’s and ‘SHOULD NOT’s are here treated as ‘MUST’s and ‘MUST NOT’s. ‘MAY’s are ignored.

1) Client: In all states:

• ‘rcv CLOSE’ will lead to state CLOSED with the action ‘snd CLOSE ACK’;
• receiving any message (except CLOSE ACK) will also perform the ‘set TIMER’ action; and
• the ‘TIMER expired’ or ‘MESSAGE invalid’ actions occuring at any state (except WAIT CLOSE ACK)

will lead to state WAIT CLOSE ACK with the actions ‘snd CLOSE & set TIMER’.



5

CLOSEDstart

WAIT
HELLO
ACK

WAIT
DATA

RESPONSE

WAIT
ACK

WAIT
CLOSE
ACK

cli
en

t sta
rt

/
sn

d
H
E
LL
O

rcv HELLO ACK / (snd ACK)
& (snd DATA REQUEST )

rcv DATA RESPONSE / (snd DATA ACK)
& (snd DATA REQUEST )

rcv
H
E
L
L
O

/

snd
H
E
L
L
O

A
C
K

rc
v
A
C
K

/
sn

d
D
A
T
A

R
E
Q
U
E
S
T

rcv CLOSE ACK /

TIMER expired /snd CLOSEDWITHOUT
ACK

2) Server: As Client.

CLOSEDstart

WAIT
ACK

WAIT
DATA

REQUEST

WAIT
DATA
ACK

WAIT
HELLO
ACK

WAIT
CLOSE
ACK

rcv
H
E
LL
O

/

sn
d H

E
LL
O

A
C
K

rcv ACK /

rcv
D
A
T
A

R
E
Q
U
E
S
T

/

snd
D
A
T
A

R
E
S
P
O
N
S
E

rcvD
ATAAC
K

/

rcv

D
A
T
A

A
C
K

/

sn
d H

E
LL
O

rc
v
H
E
L
L
O

A
C
K

/
sn

d
A
C
K

rcv CLOSE
ACK /

TIMER expired /
snd CLOSED
WITHOUTACK

IV. PROTOCOL ANALYIS

A. Security

Confidentiality is ensured by encrypting all messages (after the initial HELLO and HELLO ACK, which
must be sent in the clear) using ephemeral session keys. Their ephemarality also ensures perfect forward
secrecy, as any attacker gaining access to a given session private key would be able to decrypt at most 10
messages.

Integrity is assured via the use of a MAC for every message, initially using the shared secret s0 and



6

subsequently using each renegotiated secret. This means that a tampered message, unless one that by some
incredible coincidence hashed to the same MAC as the legitimate message, would be detectable via checking
the MAC.

Authentication is provided by the use of personal public key signing on the initial two messages, which should
serve to tie them to their purported senders’ identities, and with the use of shared, re-negotiated ephemeral
session keys to encrypt and generate MACs for each subsequent message. An attacker could only impersonate
a given party when first connecting to the server if they had access to their personal private key, which would
be a problem rather greater than the powers of one protocol to fix.

Replay attacks involve the capture of legitimate packets, which can then be sent by the attacker in
such a way as to abuse features of the protocol design. The use of initially-random sequence numbers in all of
the messages, subsequently incremented by unpredictable values, ensures that captured packets rapidly become
ineffectual, and their use will result in a closed connection.

Delay attacks involve an attacker holding legitimate packets back, to be allowed through when needed
to abuse protocol features. The use of the 25-second time-to-live period limits the risks of such an attack,
and the failure of any party to receive a response within 45 seconds should assist in the detection of packet
hold-up, indicating a man-in-the-middle attempting to perform a delay attack.

A denial-of-service attack involves blocking a legitimate user from being able to access a given service. A
man-in-the-middle could act to drop all of C’s messages before they reached S, for example, which would
result in a dropped connection, but there is no security implication here. Such an attack could be avoided by
finding a different communication channel to send over, and is thus outside of the scope of this protocol.

Padding oracle attacks are avoided by the use of AES-GCM, rather than AES-CBC, as well as the use
of encrypt-then-MAC rather than vice versa.

Other attacks, such as timing and speculative execution attacks, are not considered to be relevant to this protocol.

The MACs for the first two messages (HELLO and HELLO ACK) use the initial shared secret s0
as their key every time. However, these first two messages are sent in the clear, and the MAC used only for
authentication and integrity-checking, so this should pose no risk to perfect forward secrecy. Additionally, if
it was considered an issue, new initial shared secrets could presumably be shared via the same mechanism as
the current one.

There are situations in which one C sends two subsequent messages, without waiting for an ACK
from S for the first. These situations occur whenever C sends a DATA REQUEST message, such as after
they send their ACK in the initial three-way handshake or after they send their DATA ACK to indicate a
succesfully-received DATA RESPONSE. This could lead to a situation in which the DATA REQUEST
messages arrives before the ACK/DATA ACK, which may cause S to close the connection. However, this
can be mitigated with a time delay on C’s end between the sending of both messages. Other aspects of the
protocol design keep this from being a security issue.

Finally, as mentioned previously, the interpretation of the specification has relied on the inference that
data is released by S in response to requests from C, but without the ability to specify the exact data requested.
From that, the assumption has been made that specific data have no semantic meaning. This is important in
the case of the key re-negotiation. As S sends their HELLO after receiving a DATA ACK, and C sends
their next DATA REQUEST after sending their DATA ACK, it is possible that the key re-negotiation
will be initiated and C’s request for data ignored. Upon completion of the re-negotiation, C sends another



7

DATA REQUEST . Obviously, if it mattered exactly what data C was requesting, this would be an imperfect
solution, and one in which S stored unfulfilled DATA REQUEST s during the key-negotiation to action
later would be preferable. However, there seems to be no security implications of this.

B. Test Cases

For these test cases, an implementation is assumed to have followed the ‘SHOULD’s and ‘SHOULD NOT’s,
and ignored the ‘MAY’s.

• A Client or Server could send messages to a Server in an incorrect order to see how the other party handles
receiving unexpected input. The expected response would be a CLOSE message.

• A Client could send an initial HELLO, but send no ACK in response to the returned HELLO ACK.
The expected response would be a CLOSE message.

• A Server could not respond to an initial HELLO. The expected response would be a CLOSE message.
• A Client or Server could send a message encrypted under an old session key. The expected response would

be a CLOSE message.
• A Client or Server could send a message with an incorrect sequence number (either incremented incorrectly

from the previous number, or not matching a relevant message’s number). The expected response would
be a CLOSE message.

• A Client or Server could not respond after receiving a CLOSE message. The expected response would
be a CLOSED WITHOUT ACK message.

• A Client or Server could send a message with an incorrect MAC. The expected response would be a
CLOSE message.


