SCC 363 - Attack Assessment Report

March 20th, 2017

Group 6

Team Members:

Andras Herczeg (33705933)
Ben Goldsworthy (33576556)
Faisal Rahman (33670838)
Matt Chu (33790604)
Matthew Edwards (33721017)

SCC 363 - Attack Report 20th March 2017

SCC 363 - Attack Report 20th March 2017

Table of Contents

1 Executive Summary
1.1 Summary of Result

2 Findings
2.1 Access Control Vulnerabilities

2.1.1 View Admin Page as Non-Admin User
2.1.2 Directory Listings
2.1.3 MySQL Remote Login
2.2 SQL Injection Vulnerabilities
2.2.1 Login Bypass
2.2.2 Admin User Registration
2.2.3 Change Another User's Password
2.2.4 Database Exposure
2.3 Man In The Middle Vulnerabilities
2.3.1 Register as a Admin User
2.3.2 Negative Quantity Basket
2.3.3 Local File Inclusion In Messages
2.4 Cross Site Request Forgery Vulnerability
2.4.1 Cross Site Request Forgery
2.5 Cross-site Scripting (XSS) Vulnerabilities
2.5.1 Stored XSS in Contacts Page
2.5.2 Reflected XSS in Search Page

3 Recommendations
3.1 Sanitize User Input
3.2 Use Parameterized Queries
3.3 Don't Store Plaintext Passwords
3.4 Encrypt Client Connections Using SSL/TLS

4 References

5 Appendix A: Exploit Code

5.1 Cross Site Request Forgery

5.2 SQL Injections
5.2.1 Login Without Password
5.2.2 Register As Admin
5.2.3 Change Users Password
5.2.4 Database Exposure

5.3 Cross Site Scripting

SCC 363 - Attack Report 20th March 2017

1 Executive Summary

For this assignment we have been instructed to perform a penetration test against a web
application which we have been provided with. We have been told to test this application
for vulnerabilities and document our results. Our testing of the application has been
conducted as a real world attacker's would have been, as we searched for vulnerabilities
within the application before exploiting those found, with the goal of damaging the owning
company by stealing its data, damaging its reputation, or causing it financial issues. This
report details our findings and recommendations for the company as to steps they should
take immediately to patch up the vulnerabilities that we have found.

1.1 Summary of Results

Our testing of the site has found multiple critical vulnerabilities that allow attackers to
bypass authentication, view and change data in the database, perform cross-site scripting
(XSS) attacks on the site's users, and even steal the source code of the site. Some of these
vulnerabilities are very easy for attackers to exploit and some require more complex
approaches. We have been able to access the admin account of the site, create new admin
accounts, perform stored and reflective XSS attacks, access the MySQL database remotely
(allowing us to steal data from it), perform a cross-site request forgery attack, and access
the source code of the site.

The site is not following best security practices such as sanitizing user input, hashing used
passwords and sending sensitive data over HTTPS. There is very high chance of the site
being attacked due to the ease of exploitation of these vulnerabilities, as some of them
only require basic web security knowledge to discover and exploit. This could cause a large
amount of financial trouble to the site’s owners as they could be fined under the Data
Protection Act (1998) if the site’s user data is stolen. It can be argued the site has failed to
follow even basic web security practices.

There is a high risk to the users of the site of having their personal data stolen due to the
fact that it is not encrypted when it is sent or stored, and can be can be viewed in plaintext
on the admin panel (which does not require user authentication to view). The database
password is exposed in a /notes/ folder and MySQL is configured to allow remote logins.
The source code of the site which contains the hardcoded database login details is
available in a html.tar.gz file on the site.

SCC 363 - Attack Report 20th March 2017

2 Findings

Below are are the vulnerabilities that we have found when testing the site. We show the
steps that are required to exploit each vulnerability and the result of a successful exploit.
More details such as the cause of the vulnerability and how to fix it can be found in the
Appendix section.

2.1 Access Control Vulnerabilities

Access control mechanisms prevent certain types of users from using certain features that
they are not authorised to use. Access control vulnerabilities allow users to perform actions
or view things even though they are not authorised to do so. [1]

2.1.1 View Admin Page as Non-Admin User

Likelihood: High, scanning for admin page can be automated using free tools.

View messages
Select Message v

User List
ID: 1
i

L

L
L
L
L
L
U
L
L
L
L
L

U
U
U
u
U
V]
]
U
¥
U

User Purchases

The admin page of the site does not check that a user is authenticated, thus
allowing unauthorized users to view the admin panel of the site without logging
in. This exists because the site does not check if a user is logged in as an admin. This
exposes a number of confidential information such as messages from the sites
users, account passwords, and the order history for all of the users of the site and is
a violation of the site users privacy. If an attacker exposed this information it would
cause reputational damage to the site and this could result in financial damage as
well. Additionally, it would lead to the loss of trust between the user and site causing
the site's user base to decrease and lower the chances of repeat customers,
affecting the business as a whole. To fix this, the site should check the user's cookie
to see if they have a session token and if the token is an admin user.

SCC

363 - Attack Report 20th March 2017

2.1.2 Directory Listings

Likelihood: High - Can be automated using free tools such as DirBuster

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e ® 8

File Options About Help

hitp:/f192.168.56.101:80/

& Scan Information ' Results - List View: Dirs: ¥ Files: 14 \ Results - Tree Wiew ! é Errors: 0,
Type | Found Response Siza

Dir i/ 200 3797
File fhtml.tar.gz 200 16935240
Dir ficansf 403 467
File findex. php 200 3795
Dir fimages/ 200 7920
File {signin. php 200 4753
File fsigrup.php 200 4188
File Isearch.php 200 2222
File fcontact.php 200 4127
File Mt-shirts.php 200 6576
File Isweaters.php 200 6578
File ftrousers.php 200 5542
Dir inotes/ 200 1124
File Iverification.php 200 530
File faddtobasket. php 30z 314
File fimagesfimages. tar.gz 200 1385673
Dir fimagesfimages.tar/ 200 1352
File Inotes/note 200 1561
File fimagesfima arfimages.tar 200 1630111
Dir fimagesfimages.tar/images/ 200 1178
Dir fimagesfimages.tarfimages/images/ 200 7393
Dir ficansfsmallf 403 473

If the web server that a site is running on is not configured to disable directory
listing, an attacker could be able to retrieve confidential information. The site does
not disable directory listing and we were able to retrieve highly sensitive information
such as passwords. We used a tool called DirBuster to scan the site (using a
wordlist) for directories and files, using this tool we discovered that all of the images
used by the site can be viewed by going to /images/, but more importantly we
discovered that there is a /notes/ directory on the site that contains the database
schema for the site and also login information for the database. This could allow an
attacker to login to the database and steal a user's private information such as
passwords and credit card details. DirBuster also found a file called html.tar.gz
that contains the full source code for the application. An attacker can use the sites
source code to find vulnerabilities and knowing the database schema can be useful
when trying to exploit them.

In the above images you can see the dirbuster output where it shows the
html.tar.gz file and the /notes/ directory.

SCC 363 - Attack Report 20th March 2017

Also shown below is a copy of the sites source code that DirBuster found in a
html.tar.gz archive on the server. It contains the source code for every page on
the site including mysql.php which contains the database login details. This can be
fixed by deleting the html.tar.gz and /notes/ folder and using an .htaccess to
disable directory listing on the Apache web server.

database
products- id, name, picture, cost
user - id, mame, password, isadmin, credit_card, cwv, exp-date
basket, userid, productid, quantity

database name- fashionstore
users:
reot:root
5Cc363:500363

CREATE TABLE users{userid int mot null primary key auto increment, username char{25), name char(68}, password char(25), is admin tinyint, credit card char(25), cwv char(3), expdate char(20});
CREATE TABLE product{productid int not null primary key auto_increment, productname char(25}, picture char(68), cost decimal(5,2)};

INSERT INTO preduct VALUES (default, 'Green t-shirt', 'images/tl.jpg', '10.00');
INSERT INTO preduct VALUES (default, 'Yellow t-shirt', 'images/t2.png', '15.089');
INSERT INTO product WALUES (default, 'Red t-shirt', 'images/t3.jpg', '13.60°
INSERT INTO product VALUES (default, 'Black t-shirt', 'images/t4.jpg'
INSERT INTO preduct VALUES (default, 'Charcoal t-shirt', 'images/t5.jpeg
INSERT INTO product WALUES (default, 'Blue Sweater', 'images/sl.jpes
INSERT INTO product VALUES (default, 'Grey Sweater', ‘images/s2.]pg
INSERT INTO preduct VALUES (default, 'White Sweater', 'images/s3.jp
INSERT INTO product WALUES (default, 'Striped Sweater', 'images/sd.jp
INSERT INTO product VALUES (default, 'Charcoal Sweater', ‘images/s5.]peg
TNSERT INTG product VALUES (default, 'Brown Trousers', 'images/pl.jpg’
INSERT INTO product VALUES (default, 'Blue Trousers', 'images/p2.jpg’
INSERT INTO product VALUES (default, 'Black Trousers', 'images/p3.jpeg’,
INSERT INTO product VALUES (default, 'Pink Trousers', 'images/pd.jpg', '

addtobaske admin.php basket.php Beth.txt Bobo.txt checkout. contact.php

tphp php
Wb o
Craig.txt favicon.ico headnav. images index.php Jenny.txt John.txt
php
message. mysql.php notes payment. productphp search.php sf_New_
php php folder
signin.php signout.php signup.php signup- style.css sweaters. test.
success.php php sockets.php

trousers. t-shirts.php verification.
php php

SCC 363 - Attack Report 20th March 2017

2.1.3 MySQL Remote Login

Likelihood: High - The login details are in a easy to find public folder on the site

:~# mysql -h 192.168.56.101 -u root -p
Enter password:
Welcome to the . mmands end with ; or \g.
Your MySQL connection id is 52840
Server version: 5.6.28-Bubuntu@.15.64.1 (Ubuntu)

Copyright (c) 2068, 2016, Oracle and/or its affiliates. All rights reserved.
registered trademark of Oracle Corporation and/or its
s. Other names may be trademarks of their respective

ype '\c' to clear the current input statement.

| username
,,,,, e

0 | 664 | 13 December
3 | godfather | | passwordl23 0 987652 | 875 | 19 May
4 | jimmythecricket | es ket | 123 0 098 2345 | 525 | @5 March
5 | Admin | Admin User | admin 6 6 | 6
6 | Jo Jo 18 | 888 | NULL
9 | JohnJones | John] | 888 | NULL
R Femsoadadiiadadias Hofiiiosindusiis omaiiionian
7 rows in set (.80 sec)

After finding the login details in the notes file detailed above we were able to
remotely log into the MySQL database and view confidential information. This is
because the MySQL process on the server is configured to allow remote logins. This
could allow an attacker to steal all of the data contained within the database such as
user passwords and credit card details. The database is also protected by an
insecure password. The password for the root MySQL account is root. This is really
easy password for an attacker to guess. This vulnerability shows multiple breaches
to user privacy as well. If such an attack occurred, it would affect the business's
reputation negatively.

MySQL should be configured to not allow remote connections and the password
protecting the accounts should be a strong random string consisting of numbers,
characters, and even special characters.

SCC 363 - Attack Report 20th March 2017

2.2 SQL Injection Vulnerabilities

SQL injection vulnerabilities allow the insertion of SQL statements from the client to the
database through user input. An SQL injection may allow an attacker to read data such as
usernames and passwords from the database or they may allow an attacker to trick the
application into performing actions such as registering an admin user account or changing
an admin user's password [2].

2.2.1 Login Bypass

Likelihood: High - This is a very common and easy to find vulnerability

admin'$

aign in

There exists a sql injection vulnerability in the sign in page of the application that
could allow an attacker to login to any account without knowing the password. This
exists because the application failed to sanitize the user input before using it in a
SQL query. The statement below will use a comment to end the SQL query before it
compares the password, MySQL will check for a username called ‘admin’ and the
comment will stop the query, the result will then return true and the attacker will be
logged in. This exposes user accounts to attacker. To fix this the site should sanitize
all user input before it is used and should use parameterized queries when
performing actions on the database.

Secure Fashion

Store

Home | Admin's Basket | Sign Out | Search | Contact Us | Admin |

SCC 363 - Attack Report 20th March 2017

2.2.2 Admin User Registration

Likelihood: High - An attacker would need to know the layout of the database
tables but this can be obtained from the notes folder and the attack can be
performed using automated tools such as SQLMap [3].

LA R R R A R AR R RN ERDNDEN)]

LR LA LA R R L LR

Register

There is a SQL injection vulnerability in the signup page for the site that could allow
an attacker to register a new user as a admin account. This exists as the site does
not sanitize user input before it is used to query the database. This causes loss of
integrity of the site as anyone is able to be an admin user and also exposes users
private information on the admin page. This vulnerability can be fixed by sanitizing
user input before it is used and by using parameterized queries.

Secure Fashion

Store

Home | sgfs Basket | Sign Out | Search | Contact Us | Admin |

SCC 363 - Attack Report 20th March 2017

2.2.3 Change Another User's Password

Likelihood: High - The database layout can be easily guessed and the attack can be
performed using automated tools such as SQLMap [3].

There exists a vulnerability in the payments page that could allow an attacker to
change the password of another user. This could allow the attacker to change all
other users passwords. This type of vulnerability exists due to not sanitizing user
input. Due to data being altered, this type of vulnerability if exploited would result in
loss of data integrity.

=new WHERE userid="5"# UserlD: &
Make Payment User name: Admin
S User password: new

LS50

10

SCC 363 - Attack Report 20th March 2017

2.2.4 Database Exposure

Likelihood: High - The attack does not require any special skill to exploit the attack
can be performed using automated tools such as SQLMap [3].

There exists a SQL injection vulnerability on the search page of the site that could
allow an attacker to view the contents of the tables in the database. This exists as
the site does not sanitize user input before using it to query the database. This
causes a loss of confidentiality for the data contained within and can expose
sensitive user information such as credit card details that are not stored in an
encrypted format. If a user had their credit card details stolen because they were
not encrypted this would cause damage to the reputation of the company.

Home | Admin's Basket | Sign Out | Search | Contact Us | Admin |

Search for Products

N T

You searched for: atacker’ UNION (SELECT username, password,
credit_card FROM users);#

11

SCC 363 - Attack Report 20th March 2017

2.3 Man In The Middle Vulnerabilities

A man in the middle attack is where a communication between two parties, in this case a
client and server, is intercepted and can then be edited before it is then sent to its

destination [4].

2.3.1 Register as a Admin User

Likelihood: High - The site is not encrypted over SSL/TLS so it is easy for an attacker
to intercept data and change data.

There exists a vulnerability in the signup page that could allow an attacker to
register a new account as a admin user. This exists because when a new signup
request is submitted to the site the server will also get a isadmin parameter from
the user, normally this parameter is hidden from the user and set to ‘0", but if an
attacker intercepted this request and changed the value to ‘1" and then sent the
request on to the site (a man in the middle attack) the newly created account would
have admin privileges. This exposes the admin page to an attacker which would give
them access to confidential information such as the account details of all the site's
users and this would be a large privacy violation. To fix this the is_admin parameter
should not be retrieved from the client, there should also be a special page on the
admin panel for admins to make new admin users.

Burp Suite Free Edition v1.7.03 - Temporary Project e 60 O

Burp Intruder Repeater Window Help
Target T T Spider i Scanner] Intruder | Repeater T Sequencer | Decoder] Comparer | Extender I Project cptions | User options TAIer:s |

[Lereent | TR histqu-T-V.fehSockals historyT -Optior!s |

| #| Request to http://102.168.56.101:80

| Farward | | Drop | Intercept is on. | Action 4 C ment 2 LR

fRawT Params ; Headers | Hex |

POST Jsignup.php HTTR/1.1
Host: 192.168.55.101

User-Agent: Mozillay/5.0 (X11; Linux x86 64; rv:45.0) Gecko/20100101 Firefoxs45.0
Accept: text/html,applicationsxhtml+xml,application/xml;q=0.9,*%/*;=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: F192.168.56.101/s1gnup . php

Cookie: PHPSESSID=l3gngsvpuggarbrutdlls&0413; 1s_admin=1

Connection: close

Content-Type: application/x-www-form-urlencoded

Cantent-Length: &%

username=attacker&fullname=13378password=13376&cont1rm=1337815_admi n=1|

In the above image you can see the isadmin parameter being set to ‘1’ and in the
below image you can see the new ‘attacker’ account has access to the admin page.

12

SCC 363 - Attack Report 20th March 2017

Secure Fashion

Store

Home | attacker’s Basket | Sign Out | Search | ContactUs | Admin |

Jumpers

In the image above you can see the attacker has successfully registered as an
administrator.

13

SCC 363 - Attack Report 20th March 2017

2.3.2 Negative Quantity Basket

Likelihood: Medium - It is easy to intercept and change the data but it is unlikely
that the payment system would send the user money

There exists a vulnerability in the basket of the site that could allow an attacker to
make the site owe the attacker money. When a user adds an item to their basket a
request is sent with the quantity of each item added. If an attacker intercepts this
request and adds a minus sign in front of the quantity the basket will owe the user
money. This could result in a financial loss for the company. This vulnerability exists
as the site does not check the input from the client before it is used. To fix this the
input should be sanitized to remove any special characters such as minus signs
before it is used.

Burp Suite Free Edition v1.7.03 - Temporary Project @0 0
Burp Intruder Repeater Window Help
Target T]_Splc'er . Scanner Iinirudcr] Repeater] Sequencer | Decoder] Comparer | Ex‘;er‘.der] Project options I User options [Alerts]

= - —
| Jet HTTP history T WebSackets history | Options |

i_-«_i Request to http://192.168.56.101:80

i Forward] | Drop | | Intercept 15 on | Action J ik y | &

j. Raw]' Params | Headers] Hex |

JET faddtobasket.php?Blue_sweater=-P0&Grey sweater=0&white_sweater=0&5triped_sweater=0&Charcoal_sweater=0 HTTP/1.1
fost: 192.168.56.101

-

html, application/xhtml+xml, application/xml;q=0.9,*/*;g=0.8
guage: en-US,en;q =

-Encoding: gzip, deflate

Fezferer: http://192.168 :

Cookie: PHPSESSID=sbefevn23no48jeetfvpbgcz3; 1s_admin=1

Zonnection: close

Your final cost is £ -770.00

It you're happy with your selections:

Here we see an add to basket request being intercepted and changed to result in
the basket displaying a negative value, owning the attacker money.

14

SCC 363 - Attack Report 20th March 2017

2.3.3 Local File Inclusion In Messages

Likelihood: Medium - The attacker must be logged into an admin account to exploit
this vulnerability but it is easy to exploit and can result in sensitive information such
as source code being disclosed.

Applications - Places + # Flrefox ESR -

File Edit View History Bookmarks Tools Help

& Messages x |

& 192.168.56.101/m:

root:x:0:0:root:/root:
/bin/bash
daemon:x:1:1:daemon:/usr
/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin
/nologin sys:x:3:3:sys:/dev:

lusr/sbin/nologin
sync:x:4:65534:sync:/bin:
/bin/sync
games:x:5:60:games:/usr
/games:/usr/shin/nologin
man:x:6:12:man:/var/cache
/man:/usr/sbin/nologin

There exists a local file inclusion vulnerability in the way the site handles user
messages that could allow an attacker who is logged into an administrator account
to read files from the filesystem of the server. This exists as messages from the
contacts form are stored as files and messages.php takes a file to read as input
however it does not sanitize the input to remove file paths and this allows an
attacker to enter the filepath of a known file on the server such as the /etc/passwd
file. Below is a screenshot of the attack, the message.php was passed a file path of
the /etc/passwd file and this was then displayed. This vulnerability could allow an
attacker to read configuration files with passwords from the server, however it
requires the attacker to be logged into an admin account to exploit. This can also be
used to view the PHP source code of the site. To fix this the messages file should
hardcode the directory to look in and should strip any special filesystem characters
such as slashes.

15

SCC 363 - Attack Report 20th March 2017

2.4 Cross Site Request Forgery Vulnerability

Cross-Site Request Forgery is an attack that forces an end user to execute unwanted actions on
a web application in which they're currently authenticated. By clicking on a malicious link, the
victim involuntarily sends a request to the vulnerable website [5].

2.4.1 Cross Site Request Forgery

Likelihood: High - This vulnerability is easy to find and exploit however it requires
social engineering a user to visit a page to exploit

Welcome to your basket Jo
Your final cost is £ 0.00

It you're happy with your selections:

There exists a vulnerability in the addtobasket page that allows an attacker to
perform a cross site request forgery attack and add items to a user's basket.

Applications Places » @ Firefox ESR «

File Edit View History Bookmarks Tools Help
CSRF Attack x | *

€ file:///root/Desktopfcsf. html

[Most Visited v [l Offensive Security "\ Kali Linux % Kali Docs “ Kali Tools EBExplait-DB Wy Aircrack-ng

Check your basket

This exists because the site is using a GET request to add items to the basket instead
of a post and does not use a CSRF token to ensure the request came from the site.
This could cause reputational damage to the site as the user will think the site is
adding things to their basket and this could also result in financial damage to the
site as they may have to process refunds for users who were unaware items were
added to their basket.

Welcome to your basket Jo

16

SCC 363 - Attack Report 20th March 2017

2.5 Cross-site Scripting (XSS) Vulnerabilities

A Cross-Site Scripting (XSS) attack is where it is possible to inject malicious scripts into a
site/application. These type of attacks occur when user input is not sanitized and used
within another page. There are different types of XSS vulnerabilities two of the most
common being Stored XSS and Reflected XSS. A stored XSS attack is where the malicious
script is stored on the sites web server and served from there. A reflected XSS attack is
where the malicious script is reflected of a page on the site, a search url that contains
javascript code for the search parameter that a victim must click. When a victim clicks the
link they are taken to the search page and the malicious script from the URL is then
executed on the page [6].

2.5.1 Stored XSS in Contacts Page

Likelihood: High - This requires no interaction on the part of the victim and can be
exploited by an unauthenticated attacker

There exists a vulnerability in the contacts page that could allow an attacker to
perform a stored XSS attack against the site’'s administrators. The site does not
sanitize input in the contacts form and if an attacker enters Javascript code in the
form it will be stored and executed when a admin views the message on the admin
panel. A XSS attack would give the malicious script the information stored in the
victim's browser such as cookies and session tokens. This could allow an attacker to
steal a session token for the site and use it to log into the admins account. This
vulnerability can be fixed by sanitizing all user input in the contacts form before
storing it.

Your name;
attacker

1337 @attacker.com

Llert{*Hello®) ;</script=

Above is an example of this attack. The attacker has entered Javascript into the
contact form of the site and when the admin has loaded the attacker's message, the
scriptis run.

17

SCC 363 - Attack Report 20th March 2017

2.5.2 Reflected XSS in Search Page

Likelihood: Low - As the search parameters are not in the URL it would require a
user to copy and paste the script tag to perform this attack.

Home | sqfs Basket | Sign Out | Search | Contact Us | Admin |

Search for Products

riptzalert("Hello"):</script>

There is another XSS vulnerability inside the website's search feature. This
vulnerability can also allow attackers to perform the attack on the registered users
of the site. As discussed in the contacts page vulnerability, user input is not sanitised
which is why the search feature is exposed to Javascript code attacks. In the case of
this vulnerability, the user would be socially engineered into performing the attack
e.g. making the user click on a link. This would allow the attacker to steal a user's
cookie and use it to log in to the site. This vulnerability can be fixed by sanitizing
user input.

Above is an example of a ‘hello’ alert script generated through
<script>alert(“hello”);</script>. This shows how easily an attacker might be
run Javascript code and attack the site.

The implications of reflected XSS and stored XSS vulnerabilities are very high as once
an attacker gains access to the admin account, they will be able to have full control
over the site. This can mean that the business can fail to the point of no recovery.
User confidentiality would also be affected as the business would gain a bad
reputation.

18

SCC 363 - Attack Report 20th March 2017

3 Recommendations

Based on our findings we have developed a number of recommendations for the site to
secure their system and help prevent these types of vulnerabilities in the future.

3.1 Sanitize User Input

Of the vulnerabilities found, a large number of them stem from the fact that the application
is not sanitizing user input. The SQL injections and XSS attacks can be prevented by
removing any special characters from any user input before any operation is performed
with that data. This ensures that the user is not able to enter SQL queries or HTML data
and have the application execute it.

3.2 Use Parameterized Queries

Parameterized queries (sometimes called prepared statements) is where parameters are
placeholders in a query and the actual parameter is supplied at execution time.
Parameterized queries are a commonly used method for preventing SQL injection [7].

3.3 Don't Store Plaintext Passwords

The site stores users passwords in plain text and the passwords are available to everyone
who is able to access the admin page. This is very bad security practice, user data such as
passwords should never be stored in plain text, it should be securely hashed with a
password hashing algorithm such as bcrypt [8]. This will prevent anyone with a copy of the
database such as an attacker who has exploited an SQL flaw from being able to decrypt the
sites users passwords.

3.4 Encrypt Client Connections Using SSL/TLS

Currently the site is not using TLS to encrypt connections. This means that sensitive data
such as login information and payment information is being sent over plain text and can be
intercepted by an attacker who is then able to read the sensitive information. The site
should obtain a TLS certificate and all pages should be served over HTTPS. The site can use
a free service called LetsEncrypt [9] to obtain a certificate.

19

SCC 363 - Attack Report 20th March 2017

4 References

[1] - OWASP Broken Access Control
https://www.owasp.org/index.php/Broken_Access Control
Accessed: 21st February, 2017

[2] - OWASP SQL Injection
https://www.owasp.org/index.php/SQL Injection
Accessed: 21st February, 2017

[3] - SQLMap
https://sqglmap.org/
Accessed: 21st February, 2017

[4] - OWASP Man In The Middle Attack
https://www.owasp.org/index.php/Man-in-the-middle_attack
Accessed: 21st February, 2017

[5] - Cross Site Request Forgery
https://www.owasp.org/index.php/Cross-Site_Request Forgery (CSRF)
Accessed: 21st February, 2017

[6] - Cross Site Scripting
https://www.owasp.org/index.php/Cross-site_Scripting (XSS)
Accessed: 23st February, 2017

[7] - How and Why to Use Parameterized Queries
https://blogs.msdn.microsoft.com/sqlphp/2008/09/30/how-and-why-to-use-parameterized-

queries/
Accessed: 23st February, 2017

[8] - How To Safely Store A Password
https://codahale.com/how-to-safely-store-a-password/
Accessed: 21st February, 2017

[9] - LetsEncrypt
https://letsencrypt.org/
Accessed: 21st February, 2017

20

https://codahale.com/how-to-safely-store-a-password/
https://letsencrypt.org/
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://blogs.msdn.microsoft.com/sqlphp/2008/09/30/how-and-why-to-use-parameterized-queries/
https://blogs.msdn.microsoft.com/sqlphp/2008/09/30/how-and-why-to-use-parameterized-queries/
https://www.owasp.org/index.php/Broken_Access_Control
https://sqlmap.org/

SCC 363 - Attack Report 20th March 2017

5 Appendix A: Exploit Code

5.1 Cross Site Request Forgery

<html>
<head>
<title>CSRF Attack</title>
</head>
<body>
<h1>Check your basket</h1>
<img
src="http://192.168.56.101/addtobasket.php?Green_t-shirt=4&Yellow_t-shirt=4&Red_t
-shirt=48&Black_t-shirt=4&Charcoal_t-shirt=4" />
</body>
</html>

The tag will result in a get request to the site with the quantities of items to add. If
the user is authenticated the items will be added to the basket.

5.2 SQL Injections

5.2.1 Login Without Password

username’# - This will comment out the password check in the SQL statement so the
result will always be true when a username is found and the attacker will be logged in

5.2.2 Register As Admin

pass', 1, 'NULL', '@00@', 'NULL');# - This will finish the rest of the user insert
statement and comment the original statement out. After ‘pass’ the isadmin value is set
1’ so the new user will be admin.

5.2.3 Change Users Password

2', password='new' WHERE userid='1";# - This will edit the password of a provided
user ID and then comment the rest of the original query out

21

SCC 363 - Attack Report 20th March 2017

5.2.4 Database Exposure

attacker' UNION (SELECT username, password, is_admin FROM users);# - This
will make a union of the product fields within the search file and the user details that we
select. As there are only 3 products fields being selected by the search file we can only
select 3 at a time.

5.3 Cross Site Scripting

<script>alert(“Hello”);</script> - This will run as a script and it will create an
alert popup

22

