
Introduction to Image, Video and Speech Processing

Ben Goldsworthy
33576556

Computer Science Innovation MSci

March 14, 2015

1

Contents

1 Part I - Image & Video Processing 3
1.1 Introduction . 3
1.2 Lab Session 1 . 3
1.3 Lab Session 2 . 5
1.4 Lab Session 3 . 10

2 Part II - Speech Processing 12
2.1 Introduction . 12
2.2 Lab Session 1 . 12
2.3 Lab Session 2 . 15

A Appendix – Part I 18
A.1 flipLtRt . 18
A.2 yellowDuck . 18
A.3 Frame Differencing Algorithm . 19

B Appendix – Part II 21
B.1 QUAN_demo.m . 21
B.2 LPC_Analyze.m . 21
B.3 LPC_Synthesis.m . 22

2

1 Part I - Image & Video Processing

1.1 Introduction

This first half of the report presents the results of reading and writing images. Whilst the tasks are intended
for users of MATLAB, circumstances require me to use the functionally identical free software1 alternative GNU
Octave.2

1.2 Lab Session 1

The first lab session revolved around interpretation and manipulation of images.

Below is the initial image of a dog:

Loading the image into GNU Octave requires the imread() function, which reads the image into a 3-dimensional
array (x, y, c), where x is the x-index, y the y-index and c the RGB colour layer. We can save the result of the
function rgb2gray() on Dog.jpg using the function imwrite(), which takes the arguments of the image variable and
the new filename. This produces the following:

Increasing and decreasing the brightness of an image requires adding or subtracting a constant value to all pixel
values. For example, the result of an increase in brightness of 100 points:

1https://www.gnu.org/philosophy/free-sw.html
2https://gnu.org/software/octave/

3

And a decrease in brightness of 100 points:

The function flipLtRt()3 takes an image and produces a horizontally-mirrored image. It does so by creating a new
image, where each value is initialised to 0, then populating the image with the pixel information of the original in
reverse (i.e. for an image n columns wide, column 1 is filled with column n, column 2 with column n − 1, etc.).
The result is the following image:

The final portion of this first lab session is the script yellowDuck.m,4 which places the image duckMallardDrake.jpg

in the variable im and creates a new matrix of the same dimensions, initialised to 0s. It then places the values of
each index of im in the new image, but if the pixel in question is more than 180 in all three colour channels, the
value is replaced by (255, 255, 0), which makes it yellow. Below is the original duckMallardDrake.jpg:

And here is the result of yellowDuck, saved to an image:

3Full analysis of code in Appendix A.1
4Full analysis of code in Appendix A.2

4

This illustrates a major difficulty with image processing, i.e. the lack of semantic difference between a white pixel
of duck feather and white pixel of splashing water to the computer means both are treated equally.

1.3 Lab Session 2

The second lab session revolved around interpreting the image histogram.

Below is the initial image of a woman:5

The image was then converted into both grayscale (using rgb2gray())...

...and HSV (using rgb2hsv()) versions

Then, using the im2bw() function, the image was binarised using three threshold values (0.3, 0.6 and 0.9):

5The Lenna test picture, a ubiquitous part of computing history, is from a 1972 Playboy centrefold featuring Swedish Lenna Sjööblom;
computing is weird.

5

As you can see, the value of 0.9 all but obliterated the image with black, much as 0.1 would have done with white.
This is because the function works by dividing the 256 shades of grey into either black or white, based on the
threshold value. With a value of 0.9, roughly 90 % of the image is deemed to be black.

The program offers various ways of plotting an image histogram; one way of showing the greyscale histogram
is the imhist() function:

Another is the bar() function:

And another is the plot() function:

6

Following this, a histogram was plotted for the R, G and B channels of the original RGB image:

Choosing a threshold of 128 as a result of viewing the histogram, the following binarisation was produced:

These two examples show binarisations with thresholds of 100 and 150, respectively:

7

As before, varying the threshold affects the legibility of the image and, in more subjective terms, the mood.

Another way of manipulating the histogram comes from changing the bin size, or the precision of the results;
below are results with bin sizes of 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32 and 255 × 255 × 255, respectively:

As one can see, the increased bin size translates to a more detailed line, but the smaller bin size can give a quicker
notion of the broad distribution at a glance.

Below is a histogram of the HSV version of the image, produced the same way as the RGB one and coloured
the same (i.e. the H channel is red, etc.):

8

Finally, edge processing algorithms were employed (via the edge() function); below are examples of Sobel and
Prewitt edge detection, with the default threshold values used:

Sobel comes out on top for clarity, but only just; below is Sobel with a 0.1 treshold:

Not great; finally, here is Sobel with a 50 threshold:

9

That’ll do pig. That’ll do.

1.4 Lab Session 3

The third lab session revolved around analysing video footage to detect elements.6

Below is a frame from the provided video input.mp4:7

Using code provided for the session,8 a frame differencing algorithm was applied to the video with an initial threshold
value of 25. Below is a frame from the resulting video:9

6For this session and this session only, MATLAB had to be used. This is due to the VideoReader() function not yet being
implemented in GNU Octave (https://www.gnu.org/software/octave/missing.html)

7input.mp4 available at http://ohwhatohjeez.co.uk/˜files/input.mp4
8Full code in Appendix A.3
9Available at http://ohwhatohjeez.co.uk/˜files/output25.avi

10

Two other threshold values were used; 50:10

and 150:11

As you can see, the car is perhaps best detected with a lower threshold; 25 gave the best results, whilst 150 barely
separates the car from the background at all. However, a lower threshold than 25 would likely allow too much of
the trees rustling in the background to distort the image. This portrays a weakness of as simple an algorithm as
frame differencing.

10Available at http://ohwhatohjeez.co.uk/˜files/output50.avi
11Available at http://ohwhatohjeez.co.uk/˜files/output150.avi

11

2 Part II - Speech Processing

2.1 Introduction

This second half of the report presents the results of reading and manipulating speech signals. Again, GNU Octave
was used.

2.2 Lab Session 1

The first lab session revolved around basic audio manipulation.

Three .wav files were provided: speech01.wav,12 speech02.wav13 and speech03.wav.14 Below are the durations and
between-sample time intervals for each file:

speech01.wav 10 s 0.02 s
speech02.wav 12 s 0.08 s
speech03.wav 15 s 0.06 s

For the rest of the session, I used the file speech01.wav, which contains 3.4 kHz bandwidth speech sampled at 8
kHz. Following the below process, I created five different versions of the file via various resampling:

Below are the waveforms for DataA-E, coloured red, green,15 cyan,16 blue17 and magenta,18 respectively:

12Available at http://ohwhatohjeez.co.uk/˜files/DataA.wav
13Available at http://ohwhatohjeez.co.uk/˜files/speech02.wav
14Available at http://ohwhatohjeez.co.uk/˜files/speech03.wav
15Available at http://ohwhatohjeez.co.uk/˜files/DataB.wav
16Available at http://ohwhatohjeez.co.uk/˜files/DataC.wav
17Available at http://ohwhatohjeez.co.uk/˜files/DataD.wav
18Available at http://ohwhatohjeez.co.uk/˜files/DataE.wav

12

As you can see, DataB is half the duration of DataA, whilst DataC is twice it. This results in sped-up and slowed-
down recordings.

Below are the waveforms of the top path of the process (DataA–DataB–DataD), overlaid on each other:

And here are the overlaid waveforms of the bottom path (DataA–DataC–DataE):

13

Most visibly in the case of DataA and DataD in the top graph, even though they share a sampling rate and duration,
there are differences introduced during the resampling process. This can be seen more clearly in the below graph,
which plots half the length of both DataA and DataD:

However, the same general shape of wave is retained.

Listening to DataA, D and E, it’s clear that whilst DataE is practically identical to DataA, DataD has suffered
from the resampling process. This is because DataE came from DataC, which doubles the sampling rate of DataA,
whilst DataD came from DataB, which halved it; as a result, information was lost. The Nyquist rate, which is at
least twice the maximum frequency responses, is therefore demonstrated.

The signal to noise ratio (SNR) is discovered using the following formula:

SNRdB = 10 log10

[(
Asignal

Anoise

)2
]

This results in an SNR of 1:0.0875 for DataA and DataD, and !:0.0023 for DataA and DataE. This again relates
to the Nyquist theorem, as DataD’s construction from an audio track of half the sampling rate means far more
noise is present than DataE, which its construction from one with twice the sampling rate (the Nysquist rate again).

Following this, quantisation was explored. The provided QUAN_demo.m function19 handled the technical side of
things. The initial quantisation value used was 3, which produced an audio track that crackled and was hard to
hear, with the speaker’s first couple words practically dropped in their entirety.20 The effect was like listening on
an old-timey wireless or similar device, albeit with perhaps a colder crackle to such a device’s supposed warmer
one.

Below is a plot of both files’ amplitudes:

19Full analysis of code in Appendix B.1
20Available at http://ohwhatohjeez.co.uk/˜files/QUAN.wav

14

Obviously, the quantised file has had a large loss of information via the quantisation process.

Below is a plot of the SNR as a function of the number of quantisation bits R, using the aforementioned SNR
formula:

The SNR increases along with the number of quantisation bits, i.e. more quantisation bits gives a clearer output.
This becomes clear by listening to the outputs of quantisation bit values from 2-10,21 with 2 almost illegible and 10
clear as day. Not having used a landline in years, I would hazard a guess that a quantisation value of 622 provides
a level of quality most like the fixed public telephone network.

2.3 Lab Session 2

This lab session revolved around Linear Predictive Coding (LPC) based speech processing. Given two functions,
LPC_Analyze.m23 and LPC_Synthesis.m,24 the speech01.wav file from the previous session was again used.

Initially, a noise-excited LPC synthesised signal was created without a residual error signal being generated.25

21Available at http://ohwhatohjeez.co.uk/˜files/QUANx.wav, where x is the desired quantisation bits value
22Available at http://ohwhatohjeez.co.uk/˜files/QUAN6.wav
23Full code in Appendix B.2
24Full code in Appendix B.3
25Available at http://ohwhatohjeez.co.uk/˜files/neLPC.wav

15

This produces a version of the speech that is distorted, as though the speaker is breathing heavily into the micro-
phone.

Afterwards, a residual-excited LPC synthesised signal was created, with a residual error signal.26 This produces a
signal that sounds the same as the original.

Below is a plot of the spectograms of the original speech, the noise-excited signal and the residual error signal:27

Finally, the original speech signal was synthesised at the output of the previous LPC synthesis filter, with an exci-
tation input signal derived from the LPC analysis of a recording of a Bach piece.28 The resultant file29 recreates
the speech using the sounds of the Bach piece. Impressively, it’s still understandable.

Below are the waveforms of the original speech piece, the residual error signal dn the LPC synthesis recovered
signals (the non-Bach one):

And below, with the noise-excited signal replacing the residual-excited one:

26Available at http://ohwhatohjeez.co.uk/˜files/reLPC.wav
27Available at http://ohwhatohjeez.co.uk/˜files/residual.wav; I suggest turning down your volume
28Available at http://ohwhatohjeez.co.uk/˜files/bach16.wav
29Available at http://ohwhatohjeez.co.uk/˜files/SynthwithMusic.wav

16

I then synthesised a noise-excited signal30 and a residual-excited signal31 from speech02.wav; the results were much
the same.

30Available at http://ohwhatohjeez.co.uk/˜files/rd.wav
31Available at http://ohwhatohjeez.co.uk/˜files/rde.wav

17

A Appendix – Part I

A.1 flipLtRt

1 function newIm = flipLtRt(im)

2 % newIm is impage im flipped from left to right

3

4 [nr,nc,np]= size(im); % dimensions of im

5 newIm= zeros(nr,nc,np); % initialize newIm with zeros

6 newIm= uint8(newIm); % Matlab uses unsigned 8-bit int for color values

7

8 for r= 1:nr

9 for c= 1:nc

10 for p= 1:np

11 newIm(r,c,p)= im(r,nc-c+1,p);

12 end

13 end

14 end

flipLtRt creates a new matrix with the same dimensions as im, initialised to 0s (lines 4–6). The row index is
indicated by r, with nr storing the number of rows. r= 1:nr (line 8) therefore uses the : vector construction
operator to run through every row from the first to the last. Nested within this for loop are two more loops, which
run through the columns (c being the column index and nc the number of columns) and colour channel indices (p
being the colour channel index and np the number of colour channels). So for a 3-dimensional matrix, the nested
for loops start on the coordinate (1, 1, 1) (MATLAB arrays start at 1), or the top-left pixel in the R colour channel.
It then moves onto (1, 1, 2), or the top-left pixel in the G colour channel. After (1, 1, 3), it moves onto (1, 2, 1), or
the pixel to the right of the top-left pixel in the R colour channel. This repeats until it reaches the bottom-right
pixel in the B colour channel.
For each pixel of newIm, the values inserted are those of the original im, but with the column (c) value taken from
the opposite side of the image, as to flip an image horizontally, column c’s value will be equal to that of column
nc− (c− 1) in the original image.
The function could be easily altered to flip vertically by swapping im(r,nc-c+1,p) for im(nr-r+1,c,p). Below is the
result of such a change:

A.2 yellowDuck

1 % Color the duck yellow!

2

3 im= imread(’duckMallardDrake.jpg’);

4 [nr,nc,np]= size(im);

5 newIm= zeros(nr,nc,np);

6 newIm= uint8(newIm);

7

8 for r= 1:nr

9 for c= 1:nc

10 if (im(r,c,1)>180 && im(r,c,2)>180 && im(r,c,3)>180)

11 % white feather of the duck; now change it to yellow

18

12 newIm(r,c,1)= 225;

13 newIm(r,c,2)= 225;

14 newIm(r,c,3)= 0;

15 else % the rest of the picture; no change

16 for p= 1:np

17 newIm(r,c,p)= im(r,c,p);

18 end

19 end

20 end

21 end

22

23 imshow(newIm)

This script, similar to the function in Appendix A.1, creates a new matrix of the same size as the image to modified,
and also initialises it to 0s. Using a similar column-by-column, row-by-row loop as that function, yellowDuck then
tests each pixel. If the pixel is higher than 180 in all three colour channels (which produces a light grey), the pixel
in newIm is set to (225, 225, 0), or yellow. Otherwise, the new pixel is given the same value as the old pixel.

A.3 Frame Differencing Algorithm

1 clear all

2

3 source = VideoReader(input. mp4);

4

5 thresh = 25; % A parameter to vary

6

7 nFrames = source.NumberOfFrames; % Get the total number

8 for k=1:nFrames

9 bg(k).cdata=read(source,k);

10 end

11

12 bgg=bg(1).cdata;

13

14 bg = source(1).cdata; % read in 1st frame as background frame

15 bg_bw = rgb2gray(bgg); % convert background to greyscale

16 % ----------------------- set frame size variables -----------------------

17 fr_size = size(bgg);

18 width = fr_size(2);

19 height = fr_size(1);

20 fg = zeros(height, width);

21 % --------------------- process frames -----------------------------------

22 for i = 2:nFrames

23 fr = bg(i).cdata; % read in frame

24 fr_bw = rgb2gray(fr); % convert frame to grayscale

25 fr_diff = abs(double(fr_bw) - double(bg_bw));

26

27 for j=1:width % if fr_diff > thresh pixel in foreground

28 for k=1:height

29 if ((fr_diff(k,j) > thresh))

30 fg(k,j) = fr_bw(k,j);

31 else

32 fg(k,j) = 0;

33 end

34 end

35 end

36

37 bg_bw = fr_bw;

38

39 figure(1),subplot(3,1,1), imshow(fr)

40 subplot(3,1,2), imshow(fr_bw)

41 subplot(3,1,3), imshow(uint8(fg))

19

42

43 M(i-1) = im2frame(uint8(fg),gray); % put frames into movie

44 end

45

46 movie2avi(M,’frame_difference_output’, ’fps’, 30); % save movie as avi

20

B Appendix – Part II

B.1 QUAN_demo.m

1 function [snr, Y, Yq, Sr] = QUAN_demo(R,string)

2 % The OUTPUTS are:

3 % snr is the signal-to-noise ratio of quantatization

4 % Y is the original speech/audio data in the file

5 % Yq is the quantized data

6 % Sr is the sample rate

7 % The INPUTS are:

8 % R is the number of bits to set L = 2^R quantization levels

9 % string is the input WAV filename

10 % Read the speech file data

11 [Y,Sr]= wavread(string);

12 % Calculate the number of Quantization Levels

13 L = 2^R;

14 % Normalize amplitudes to range [+0.5, -0.5]

15 Y = Y/max(Y)*0.5;

16 % Perform the quantization

17 Yq = round(Y*L)/L;

18 % Print a message to screen

19 fprintf(’Quantized with R = %d bits = %d levels\n’, R, L);

20 % Compute the SNR

21 snr = sum(abs(Y).^2)/sum(abs(Y-Yq).^2);

22 return;

This function takes a filename and a number of quantisation bits, then manipulates the waveform based on the
latter by adjusting the amplitude range based on the input signal (line 15, which takes the audio data in Y and
divides it by the maximum frequency present, halved).

B.2 LPC_Analyze.m

1 function [a,g,e] = LPC_Analyse(x,p,h,w)

2 % [a,g,e] = LPC_Analyse(x,p,h,w) Fit LPC to short-time segments

3 % x is a stretch of signal. Using w point (2*h) windows every

4 % h points (128), fit order p LPC models. Return the successive

5 % all-pole coefficients as rows of a, the per-frame gains in g

6 % and the residual excitation in e.

7 % 2001-02-25 dpwe@ee.columbia.edu

8

9 if nargin < 2

10 p = 12;

11 end

12 if nargin < 3

13 h = 128;

14 end

15 if nargin < 4

16 w = 2*h;

17 end

18

19 if (size(x,2) == 1)

20 x = x’; % Convert X from column to row

21 end

22

23 npts = length(x);

24

25 nhops = floor(npts/h);

26

27 % Pad x with zeros so that we can extract complete w-length windows

28 % from it

21

29 x = [zeros(1,(w-h)/2),x,zeros(1,(w-h/2))];

30

31 a = zeros(nhops, p+1);

32 g = zeros(nhops, 1);

33 e = zeros(1, npts);

34

35 % Pre-emphasis

36 pre = [1 -0.9];

37 x = filter(pre,1,x);

38

39 for hop = 1:nhops

40 % Extract segment of signal

41 xx = x((hop - 1)*h + [1:w]);

42 % Apply hanning window

43 wxx = xx .* hanning(w)’;

44 % Form autocorrelation (calculates *way* too many points)

45 rxx = xcorr(wxx,wxx);

46 % extract just the points we need (middle p+1 points)

47 rxx = rxx(w+[0:p]);

48 % Setup the normal equations

49 R = toeplitz(rxx(1:p));

50 % Solve for a (horribly inefficient to use full inv())

51 an = inv(R)*rxx(2:(p+1))’;

52 % Calculate residual by filtering windowed xx

53 %rs = filter([1 -an’],1,wxx);

54 aa = [1 -an’];

55 rs = filter(aa, 1, xx((w-h)/2 + [1:h]));

56 G = sqrt(mean(rs.^2));

57 % Save filter, gain and residual

58 a(hop,:) = aa;

59 g(hop) = G;

60 %e((hop - 1)*h + [1:w]) = e((hop - 1)*h + [1:w]) + rs’/G;

61 e((hop - 1)*h + [1:h]) = rs’/G;

62 end

B.3 LPC_Synthesis.m

1 function d = LPC_Synthesis(a,g,e,h)

2 % d = lpcsynth(a,g,e,h) Resynthesize from LPC representation

3 % Each row of a is an LPC fit to a h-point (non-overlapping)

4 % frame of data. g gives the overall gains for each frame and

5 % e is an excitation signal (if e is empty, white noise is used;

6 % if e is a scalar, a pulse train is used with that period).

7 % Return d as the resulting LPC resynthesis.

8 % 2001-02-25 dpwe@ee.columbia.edu

9

10 if nargin < 3

11 e = [];

12 end

13 if nargin < 4

14 h = 128;

15 end

16

17 [nhops,p] = size(a);

18

19 npts = nhops*h;

20

21 if length(e) == 0

22 e = randn(1,npts);

23 elseif length(e) == 1

24 pd = e;

22

25 e = sqrt(pd) * (rem(1:npts,pd) == 0);

26 else

27 npts = length(e);

28 end

29

30 d = 0*e;

31

32 for hop = 1:nhops

33 hbase = (hop-1)*h;

34

35 % oldbit = d(hbase + [1:h]);

36 aa = a(hop,:);

37 G = g(hop);

38 newbit = G*filter(1, aa, e(hbase + [1:h]));

39

40 % d(hbase + [1:w]) = [oldbit, zeros(1,(w-h))] + (hanning(w)’.*newbit);

41 d(hbase + [1:h]) = newbit;

42 end

43

44 % De-emphasis (must match pre-emphasis in lpcfit)

45 pre = [1 -0.9];

46 d = filter(1,pre,d);

23

